Color reconnection in $t\bar{t}$ final states

Spyros Argyropoulos

work in collaboration with Torbjörn Sjöstrand JHEP 11(2014)043 (arXiv:1407.6653)

Why bother about color reconnection?

Experiment	m _{top} [GeV]	Error due to CR	Reference
World comb.	173.34±0.76	310 MeV (40%)	arXiv:1403.4427
CMS	172.22±0.73	150 MeV (20%)	CMS-PAS-TOP-14-001
D0	174.98±0.76	100 MeV (13%)	arXiv:1405.1756

CR is one of the dominant systematics in top mass measurements

- reduce the error on the top mass
- ➡ learn about the soft component of tt events

Our goal produce a range of different CR models in Pythia 8 to study how big an effect color reconnection could have on m_{top}

This talk

- 1. What CR is and how it affects tt final states
- 2. How the CR uncertainty is determined
- 3. What we did to improve it
 - a. new models
 - b. their effect on the top mass
 - c. estimate for the CR uncertainty
 - d. how to reduce the uncertainty

1. CR and its effect on the top mass

Hadrons from strings

Effect of CR on m_{top}

Direct m_{top} measurement (lepton+jets channel)

We are interested in the color topology...

Some remarks on CR

i. Perturbative part: Parton showers (generally) use $N_c \rightarrow \infty$

this means in particular that quarks from W will always have a different color than the top

- \Rightarrow Color reconnection probes sub-leading (1/N_c) effects
- **ii.** Non-perturbative part: in busy events strings can overlap \Rightarrow many soft gluon exchanges impossible to handle perturbatively
 - Color reconnection allows to model non-perturbative interactions between color fields during the hadronization transition

2. Assigning an uncertainty

Estimating the CR uncertainty

 $\Delta m_{top} = m_{top}(default CR) - m_{top}(no CR)$

Until now this was done with **Pythia 6**, where multiple CR models are available.

We want:

- range of (new) CR models
- \bullet models that will envelop the data \Rightarrow uncertainty band
- a way to kill them

The problem

- **'no CR' is unphysical** (uncertainty overestimated?)
- $m_{top}(no CR)$ might not provide a bound for Δm_{top} (uncertainty underestimated?)
- limited range of modeling options in Pythia 8

3a. The new models

A word on time scales

$$\ell = \frac{\gamma \beta c \hbar}{\Gamma_{\rm top}} \simeq 0.2 \ {\rm fm}$$

CR in top can be different than CR in Min Bias

Two extreme options:

- late resonance decay
 - top decay products cannot reconnect
- early resonance decay
 top decay products can reconnect

The models

<u>Old</u>

- default
- default ERD

New (toy models)

- forced random
- forced nearest
- forced farthest
- forced smallest $\Delta \lambda$
- smallest $\Delta \lambda$

New (more sophisticated)

- swap
- move
- swap + flip
- move + flip

all events

only top events default CR afterburner

All models available in **Pythia 8.2** - examples/main29.cc

Models differ in...

When a CR is made

1. random

2. forced

3. minimization

How a CR is made

- A. gluon move
- B. color swap (both indices)
- C. color flip (single index)

How a CR is made

3b. Effect on mtop

Disclaimer!

What we do is a **toy top mass measurement**. A real experimental measurement is expected to have different sensitivity to the effects probed herein.

Effect on m_{top} (before tuning)

Reconstructed top mass, $m_W \in [75, 85]$ GeV, $p_T(\text{jets}) > 40$ GeV

Model	$\Delta m_{top}^{rescaled}$ [GeV]	
default	+0.209	
default ERD	+0.285	
forced random	-6.508	

- CR can inherently have big effects!
 Δm_{top} is not bounded by m_{top}(no CR), in other words m_{top}(CR)-m_{top}(no CR) probably underestimates the uncertainty
- 3. Effects are asymmetric negative mass shift easy, positive one hard

15

Why CR shifts m_{top}

$$m_{\rm top}^2 = (p(b) + p(j_1) + p(j_2))^2$$

changes in p (leakage of hadrons out of the jet cone)

changes in $p_{j1}p_{j2} \sim cos\theta_{j1j2}$

Tuning

- toy models: jet shapes in $t\bar{t}$ events (CR strength α)
- MB models: minimum bias data (p_{T0}^{ref} , $\Delta \lambda_{cut}$)

Effect on m_{top} (after tuning)

Model	$\Delta m_{top}^{rescaled}$ [GeV]
default	+0.239
forced random (min)	-0.524
move	+0.239
swap (max)	+0.273

- Maximum variation: $m_{top}^{max} m_{top}^{min} \approx 800 \text{ MeV}$
- considering only the more sophisticated models:

 $\Delta m_{top} \approx 500 \text{ MeV}$

We believe that this is a realistic estimate of the CR uncertainty based on our current understanding of the phenomenon and on the available measurements.

3d. How to reduce the uncertainty

Make measurements that can constrain the models

- e.g. inclusive ones: charged particle multiplicity, transverse momentum
- UE type measurements in tt events, e.g. charged particle spectra in different regions (as in CMS-PAS-TOP-13-007), $< n_{ch} > (\Delta R_{Wb})$ etc

Ongoing and future analyses will hopefully incorporate these measurements

Summary

The situation so far...

- until recently very few measurements to constrain CR in top events
- m_{top}(CR) m_{top}(no CR) probably underestimates the uncertainty (at least with Pythia8 model)

Our work...

- **new CR models** developed and tuned to data
- a realistic estimate for the top mass uncertainty is of the order of 500 MeV
- observables to constrain/exclude CR models with existing LHC data

New "QCD-based" model by J.Christiansen and P.Skands also introduced in Pythia 8.2 (arXiv:1410.3012) - its effects on the top mass are under study

Thanks for your attention!

CR in the default model

<u>When</u>

1. Starting from lowest p_T interaction calculate reconnection probability

$$P_{\rm rec}(p_T) = \frac{(R_{\rm rec}p_{T0})^2}{(R_{\rm rec}p_{T0})^2 + p_T^2}$$

softer systems easier to reconnect
soft = extended wavefunction

 $p_T \downarrow \implies P_{\rm rec} \uparrow$

2. Iterate (1) for all interactions ; if $P_{rec} > \alpha \in [0,1]$ do reconnection

→ stochasticity

<u>How</u>

- 1. Sort interactions that where CR will happen in decreasing p_T —
- 2. Starting from the **hardest interaction** find color dipoles (i,j)
- 3. Move gluons {k} from softer interactions to dipole (i,j) that minimizes the increase in 'string length'

$$\Delta \lambda = \lambda_{ik} + \lambda_{jk} - \lambda_{ij} = \ln \frac{(p_i \cdot p_k)(p_j \cdot p_k)}{(p_i \cdot p_j)m_0^2}$$

minimally affect the perturbative color flow!

$$\lambda \sim \Delta y \sim \langle n \rangle$$

Gieseke, Röhr, Siódmok '12 (arXiv:1206.0041)

Plain Color Reconnection

- iterating over quarks in all clusters, try reconnection
- Select reconnection which minimizes $m_C + m_D$ iff $m_C + m_D < m_A + m_B$
- Accept reconnection with probability P_{reco}

Statistical Color Reconnection

- starting from cluster with low "color length": $\lambda \equiv \sum m_{\text{cluster}}^2$
- Accept all reconnections which reduce λ
- Accept reconnections which increase λ with probability $P = \exp\left(-\frac{\lambda_{\text{after}} \lambda_{\text{before}}}{T}\right)$
- $T_{\rm in} = c \cdot {\rm median} |\Delta \lambda|$ decreasing after each step by a tunable amount
- Algorithm stops when no reconnections are made or after a tunable number of steps

cluster